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ON MANAGING THE USE OF SURROGATES IN GENERAL NONLINEAR
OPTIMIZATION AND MDO
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Abstract

This paper 1s concerned with a trust-region ap-
proximation management framework (AMF) for solv-
ing the nonlinear programming problem, in general,
and multidisciplinary optimization problems, in par-
ticular. The intent of the AMF methodology is to
facilitate the solution of optimization problems with
high-fidelity models. While such models are designed
to approximate the physical phenomena they describe
to a high degree of accuracy, their use in a repetitive
procedure, for example, iterations of an optimization
or a search algorithm, make such use prohibitively
expensive. An improvement in design with lower-
fidelity, cheaper models, however, does not guar-
antee a corresponding improvement for the higher-
fidelity problem. The AMF methodology proposed
here is based on a class of multilevel methods for con-
strained optimization and is designed to manage the
use of variable-fidelity approximations or models in
a systematic way that assures convergence to critical
points of the original, high-fidelity problem.

Key Words: Approximation concepts, model man-
agement, surrogate optimization, nonlinear pro-
gramming, multidisciplinary optimization, multilevel
methods, computational engineering.

Introduction

This paper concerns
approach—a trust-region approximation manage-
ment framework (AMF)—for controlling the use of
approximations or models of variable fidelity in solv-

ing the nonlinear programming problem (NLP):

a globally convergent

minimize  f(x)
subject to  h(x) =0 (1)
g(z) >0,

where the objective f : " — R and the equality con-
straints h : " — R™ and the inequality constraints
g : R — NP are sufficiently smooth nonlinear func-

tions with m,n,p > 0 and m < n.

Mathematical models of physical phenomena nec-
essarily provide only an approximation to the “true”
entities they describe, that is, all computational mod-
els are approximations or surrogates of the underlying
function. In some publications, special meaning is re-
served for the terms “approximation”, “model”, and
“surrogate” | and the meaning differs from author to
author. In the context of this paper, the terms are
interchangeable.

High-fidelity models, such as the Navier-Stokes
equations of aerodynamics, are designed to approx-
imate physical phenomena to a high degree of ac-
curacy. However, their use in repetitive procedures,
for instance, in iterations of an optimization algo-
rithm, can be prohibitively expensive. On the other
hand, an improvement in design with lower-fidelity,
cheaper models (e.g., the Euler equations for aerody-
namics) does not guarantee a corresponding improve-
ment for the higher-fidelity problem. A natural ap-
proach to alleviating this difficulty is to alternate the
use of higher-fidelity approximations with the use of
lower-fidelity approximations in a single optimization
procedure, based on some rules for deciding when to
switch to a model of a different fidelity.

Approximations have been used in engineering
optimization for a long time in various procedures
based on heuristics (e.g., [1, 2, 3]). A survey on the
use of approximations in structural optimization can
be found in [4]. Reports of recent efforts in devel-
oping methodologies for “variable-complexity model-
ing” can be found in [5, 6]. With a few exceptions ([7],
[8]), until recently, the analysis had focused on the
question of convergence to a solution of the surrogate
problem ([9], [10]). The intent of the AMF methodol-
ogy proposed here is to facilitate the solution of opti-
mization problems with high-fidelity models by alter-
nating their use with the use of lower-fidelity models
in a systematic way, resulting in a procedure that is
globally convergent to a critical point of the high-
fidelity problem.
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Work on approximation management frameworks
may be roughly categorized into zero-order [11] or
derivative-free [12] methods and first-order methods
[13].  Formally, the zero-order methods are those
based on direct-search algorithms that do not build
models of functions and, hence, require no derivative
information from the user, while first-order methods
explicitly rely on derivative-based models. In prac-
tice, however, the distinction is not as pronounced,
because zero-order frameworks are hybrid methods
that use a direct-search component but do build mod-
els with approximate derivative information. Because
first-order frameworks rely on derivative-based mod-
els explicitly, however, to date only the first-order
frameworks have been extended to handling general
nonlinear constraints. The question of when it may
be preferable to use a framework of a particular order
is open and is a subject of ongoing research.

A provably convergent first-order AMF for uncon-
strained optimization was introduced in [13, 14, 15].
It was based on the trust-region methodology (e.g.,
[16, 17]), which can be described as an adaptive
move limit strategy for improving the global behav-
ior of local model-based algorithms. The work in [13]
dealt with unconstrained optimization for two rea-
sons. First, many algorithms for solving constrained
problems are reduced to solving a sequence of un-
constrained subproblems. Thus the analysis of un-
constrained problems provides a foundation for the
treatment of constrained ones. Second, the introduc-
tion of the idea was eased by addressing only uncon-
strained problems. However, the need to solve con-
strained problems was obvious, and in [13], we stated
that the extension of the unconstrained AMF to con-
straints via, say, the augmented Lagrangian approach
[18] was immediate. This extension is done in [19].
Another extension of the AMT in [13] to constrained
optimization has been proposed in recent work [20]
that uses multiplier methods together with response
surfaces and the concurrent subspace optimization
method [21] for multidisciplinary design optimization
(MDO). Convergence of the latter method has been
conjectured.

The AMF methodology discussed in the present
paper concerns a scheme based on a class of multilevel
methods for large-scale constrained trust-region op-
timization (MAESTRO) [22, 23, 24, 25]. The result-
ing AMF manages the use of variable-fidelity models
both for the constraints and the objective in a sys-
tematic fashion that preserves the global convergence
properties of the underlying class of algorithms.

The idea is as follows. Given high-fidelity mod-
els f(z), h(z), g(x) of the objective, equality, and
inequality constraints, respectively, of a physical pro-
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cess, and a suite of corresponding lower fidelity mod-
els {al ()}, {a"(2)}, {a?(x)}, the overall “external”
framework is that of a suitably modified foundation
algorithm, in this case, the MAESTRO class of algo-
rithms. The computation of the trial steps in the
external framework is then itself a set of iterative
procedures. These procedures bear the brunt of the
computational expense and they are done by using
approximations to the lower-fidelity models. The al-
gorithm resorts to high-fidelity computations only pe-
riodically to evaluate progress towards a critical point
(or a solution) of the high-fidelity problem.

The multilevel AMF is capable of handling arbi-
trary models, provided that a set of consistency con-
ditions defined later in the paper is satisfied at some
points of the iterative procedure. For example, AMF
is not limited to the use of algebraic, Taylor series,
or response surface approximations. Analyses of vari-
ous physical fidelity, such as Navier-Stokes and Euler
codes, can be used as variable-fidelity function evalu-
ators in AMF. In current demonstrations, we are par-
ticularly interested in managing aerodynamic models
of varying physical fidelity.

The paper is organized as follows. Section 2 gives
a brief overview of the underlying class of multilevel
algorithms. Section 3 introduces the bilevel AMF in-
tended for solving conventional NLP with a single
block of constraints. Section 4 describes a multilevel
AMF for large NLP or for MDO problems. Section
5 contains some very preliminary numerical results.
Section 6 concludes with a summary and some re-
marks concerning ongoing research.

The notation will be introduced as necessary. All
norms in the remainder of the paper are £ norms.

Background:
MAESTRO class for nonlinear optimization

This section contains a brief review of the under-
lying MAESTRO class of algorithms for constrained
optimization [22, 23, 24, 25, 26] without the inclusion
of the approximation management.

The current AMF demonstrations at the Mul-
tidisciplinary Optimization Branch (MDOB) deal
with relatively small problems—O(10) variables and
constraints—with expensive function evaluations.
The general inequalities are managed via squared
slacks and, therefore, the remainder of the paper is
concerned with the nonlinear equality constrained op-
timization problem (EQC):

minimize  f(x)
subject to  A(z) = 0.

(2)

The MAESTRO class of methods for constrained
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optimization is a class of algorithms motivated by
MDO problems with arbitrary couplings but applica-
ble to large-scale optimization problems in general.

In this approach, the constraints or equations of
the system are partitioned into M blocks

hy ()
h(x) :

in a manner dictated by the application. In the con-
text of MDO, disciplinary boundaries provide a nat-
ural partitioning into blocks. No special structure is
imposed on the problem. In particular, narrow band-
width of coupling is not assumed, and the subsystems
of the problem can be, in principle, fully coupled.

Once the system is partitioned into subsystems,
given a current approximation to a solution, the
next point is computed in a sequence of progressively
lower-dimensional trust-region subproblems, each of
which computes substeps on its own block of equa-
tions or constraints, subject to maintaining the pre-
dicted improvement already obtained for the previ-
ous blocks. The final substep 1s computed by mini-
mizing the model of the objective function or of the
Lagrangian, subject to maintaining the predicted im-
provement in the models of all constraint blocks. The
total step is the sum of the substeps computed in the
subproblems.

In particular, suppose z. is the current ap-
proximation to a solution of problem EQC. Let
01, ...,0p41 be the trust region radii for the M sub-
problems that deal with constraints plus the sub-
problem that deals with the objective function. The
trust-region radii bound the regions in which particu-
lar models are “trusted” to approximate the behavior
of the corresponding functions. (After the trial step
is computed, the actual behavior of the merit func-
tion is compared to its predicted behavior and the
trust-region radii are updated in a systematic man-
ner.) Further, let yo = ®.. Then the trial step s.
is computed as a sum of the substeps s, each of
which is an approximate solution of one of the M +1
subproblems. During the multilevel constraint elim-
ination procedure, each substep s; is computed by
approximately minimizing the Gauss-Newton model
of a particular constraint block, subject to the null
space constraints that assure the maintenance of the
predicted improvement already obtained for the pre-
vious blocks of constraints. Specifically, the following
subproblem is solved:

minimize % || hi(ye—1) + VAL (yy—1)s ||2
subject to Vh]T(yj_l):;:O,j: 1,... k=1,
sl < 6k,
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where k = 1,..., M is the number of the currently
processed constraint block and the number of the
subproblem. (Note that for & = 1 there is no null-
space constraint.) The points y, are then set to
Yg + si. Once the constraints have been processed,
the substep spr41 on the model of the objective func-
tion is computed by approximately minimizing the
quadratic model ¢(s) of the objective in its own trust
region, as follows:

minimize  ¢(s) = f(ynm) + VL (yar)s + %STBMS
subject to Vh]T(yj_l):;:O,j: 1,...,.M
|51l < dnrsa,

where By is the Hessian of f at y3r or an approxima-
tion to it. The only assumption placed on the approx-
imation of the Hessian is that its norm is uniformly
bounded from above. In particular, the Hessian can
be zero, resulting in a linear model of the objective.

The total trial step s. from the point z. is the
sum S =81 + ...+ Spr41-

The salient feature of the trial step computation is
that each substep s; is assumed to solve its subprob-
lem only approximately. “Approximately” means
that each s; can be obtained in any manner suitable
to the application, as long as it satisfies two mild
conditions. Specific ways of computing the substeps
will give rise to different members of the MAESTRO
class.

The first of the two conditions on the substeps is
a sufficient decrease condition known as the Fraction
of Cauchy Decrease condition (FCD). It concerns the
change in the model of the objective function or con-
straints from the point z. to the point z. + s. for
the entire trial step and from points y;_; to points
Yg—1-+ s 1n computing the substeps. Roughly speak-
ing, FCD says that a particular model is required to
predict a fraction of the improvement in the objec-
tive or constraint functions that is predicted by the
steepest descent step, i.e., the minimizer of the linear
model of a particular function, restricted to the trust
region. Let hy, denote half the gradient of the norm
squared of the constraints, i.e.,

hi = Vhi (ys—1) i (Y- 1)-

For each constraint block, the FCD condition can be
stated in the following form: there exist ¢ > 0 and
I’ > 0, independent of the iterates, for which the sub-
step si satisfies

9
| A (1) || — || hic (ye—1) + Vg (yr—1) " sp || >
i |

r

o

hk H min (Sk,
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For the objective, the FCD condition implies that the
substep spr41 satisfies

Flyar) — ¢(ysr + spr41) >

o || V£(yar) || min <6M+1’ w) .

The constants ¢ and I' need not be same for the ob-
jective and the constraint blocks, in general, but they
can be made the same.

The FCD condition is easily satisfied in prac-
tice. Under the assumption of FCD, strong conver-
gence statements can be made about trust-region al-
gorithms for unconstrained optimization [17, 27]. For
the MAESTRO class for constrained optimization,
an additional boundedness condition is necessary. In
particular, each substep si, k = 1,..., M is required
to satisfy

[l 1 < K Ar(yr-1) |l

for some constant K independent of the iterates.
Again, K need not be the same for all blocks of con-
straints. This condition is also very mild. It assures
the existence of pseudoinverses for the derivative ma-
trices of the constraint blocks, and it allows for a wide
variety of step choices.

The trial step is evaluated by comparing the ac-
tual improvement in the merit function with the pre-
dicted improvement in the merit function. The step
is accepted or rejected based on the comparison, and
the trust-region radii are adjusted. The merit func-
tion and the step acceptance and update procedures
are described in more detail in the next section.

Given the two conditions on the substeps sg, un-
der a number of conventional assumptions of the non-
linear programming analysis, the algorithms of the
MAESTRO class have been proven to converge to
critical points of problem EQC [22, 28].

The mildness of the requirements placed on the
substeps assures that the class is very extensive. This
attribute 1s significant from the application perspec-
tive, because in MDO, the blocks originate from dif-
ferent disciplines and almost certainly require differ-
ent solution methods. Since each substep is computed
autonomously, it has been noted ([22]) that MAE-
STRO would provide a natural framework for deal-
ing with different models for MDO in a systematic
fashion.

Bilevel AMF

We first consider the case of a single block of con-
straints, or the conventional NLP, in which the con-
straints are not partitioned. The trial step in the un-
derlying algorithm is composed of two substeps, first

4

on the constraints and then on the objective, result-
ing in a bilevel MAESTRO-based AMF procedure.

In the MAESTRO class, as in classical trust-
region algorithms, the amount of optimization done
at each trial step 1s controlled by varying the size of
the trust region, because only one model is used for
constraints and one model is used for the objective
during all optimization iterations. Because the mul-
tilevel AMF inherits the global convergence proper-
ties of the original class, it is not necessary to change
models to obtain convergence. However, in the case
when other models are available, such as varieties of
structural or aerodynamic models, MAESTRO-based
AMF provides the user with guidance on changing the
nature of the models.

Computing the trial step

In the bilevel AMF, to compute the trial step from
the current point x., we first select a model of the
constraints a’ that satisfies the following consistency
conditions for the constraints at that point:

(xc) h(z.)
Va(x.) Vh(zx.).

(3)

We find a substep s; that approximately minimizes
that model within its trust region. The process of
computing the substep is itself an iterative procedure.
Next, we select a model al of the objective function
or the Lagrangian that satisfies the consistency con-
ditions at the just computed point:

al(ze + 51)
Vag(xc + s1)

flze +51) (4)

Vi(ze + s1).

The substep s 1s computed in another iterative pro-
cedure to approximately minimize the model in its
own trust region. The total trial step s, is the sum
of the two substeps.

Consistency conditions (3) and (4) are the condi-
tions used in the unconstrained AMF [13]. The con-
ditions can be relaxed, but we will not pursue that
line of reasoning here. Even in the form of (3) and
(4), the conditions are not restrictive, as they can be
easily enforced [29], given any two models.

Consistency requirements are placed on the mod-
els used at each optimization iteration of the external
framework. No such assumptions are made during
the inner iterative procedures when the approxima-
tions of the lower-fidelity models are minimized re-
peatedly.

Numerically, let A. € R be the current value of
the trust-region radius. Then the current trial step
s will be computed as follows:
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Set zg = x,
Select a”, such that a’(z) = h(zg) and
Val(z) = Vh(zo).
Compute s; that approximately solves:
minimize a”(z + s)
subject to||s|| < 0A., 6 € (0.5,0.6).
Set 21 = zp + s1.
Select af, such that af(z1) = f(21) and
Val(z1) = Vf(z1).
Compute so that approximately solves:
minimize af (2, + s)
subject to Va’(25)Ts =0
sl < /AT T1TF.
Set s, = s1 + $9,

where ¢ € (0.5,0.6) is a somewhat arbitrary constant
(between zero and one) that partitions the trust re-
gion into two sections, one for work with the con-
straints, the other, for work with the objective.

This algorithm for computing the trial step is a
special case of the MAESTRO class with the dis-
tinction that the Gauss-Newton model of the con-
straints and the quadratic model of the objective or
the Lagrangian have been replaced by the general,
first-order models that satisfy the consistency condi-
tions (3) and (4).

For the purposes of global convergence analysis,
the £5 penalty function

Pa;p) = f(x) + pll h(x) |I”

suffices as a merit function. The penalty parame-
ter p balances the progress toward optimality with
the progress toward feasibility. Global convergence
analysis is also applicable when the augmented La-
grangian is used as the merit function. The latter

would be used for computational efficiency.

Updating the penalty parameters

Before the trial step 1s evaluated, the penalty pa-
rameter is updated. The parameter p is a positive,
scale dependent number. The updating scheme is rig-
orous and it extends the scheme introduced in [30].
The penalty parameter is occasionally increased to
ensure that the predicted reduction in the merit func-
tion is positive at each iteration. In particular, let us
set pc = 1 at the beginning and choose § € (0, 1).
Let s, = s1 4+ s2 be the trial step computed during
some iteration, and let p. be the current value of the
penalty parameter. Then we update p. as follows:

Compute hpred. = || h(x.) ||2 — || al(ze + sc) ||2

Compute the predicted reduction
pred. = [f(z.) — al (zc + 5:)] + pe hpred,.

5

If pred. > & hpred. then

P+ = Pe-
Else

p+ = pe + 5,

where p= = 2[@5(%—]!;;2!—1‘(%)].
End if ’
Set pe = py.

Thus, the penalty parameter is increased just suf-
ficiently to maintain positive predicted reduction.
Given that the algorithm does not terminate at a par-
ticular iterate, the penalty parameter can be shown to
be bounded above. Since, when the penalty parame-
ter has to be increased, it is increased just enough to
keep the predicted reduction positive, it is expected
to grow more slowly than in methods where it is in-
creased simply by a predetermined factor. It should
be emphasized that the penalty parameter is used
only to evaluate the trial step and not in computing
the step.

Evaluating the trial step and updating
the radius

Once the penalty parameter is updated, the trial
step is evaluated. It is accepted if it produces an ac-
tual decrease in the merit function, and it is rejected
otherwise:

o ={

To adjust the trust-region radius, one considers
the ratio of the actual reduction defined as

if P(xe + s¢;pe) < Ple; pe)
otherwise.

Te+ S
Ze

(5)

ared, = P($c; pc) - P($c + S¢; Pc),

to the predicted reduction pred.:

ared,

T opred,’

When the ratio is close to zero, the predictive be-
havior of the model is unsatisfactory. The agreement
between the actual and predicted reduction need not
be large. For instance, typically, r < 107° is usually
considered to signify a unsuccessful step. A larger
ratio indicates satisfactory behavior. The radius is
updated as follows: positive constants r; < rs < 1
and ¢; < 1, ¢s > 1 are chosen to regulate the con-
traction and expansion of the trust region. Then

max{ci|| s¢ ||, A} ifr<r
Ap =< min{ea|| A ||, A*} ifr>r (6)
|| s || otherwise,

where A, i1s a lower bound on the trust-region radius
and A* is an upper bound. Details on typical values
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of the parameters for trust-region algorithms can be
found in [31].

One should note that although for the purposes
of engineering analysis a large r (greater than one)
indicates a poor match between the higher and lower
fidelity models, for the purposes of optimization, a
large r indicates excellent predictive capabilities of
the model, and the radius A, is increased.

Details of computing the trial step

Since the underlying algorithm belongs to the
MAESTRO class, the MAESTRO-based AMF will
converge to a critical point of the high-fidelity prob-
lem under the assumptions that lead to convergence
of the underlying class. This means finding the sub-
steps s1 and s; that will satisfy the sufficient de-
crease conditions necessary for establishing conver-
gence. The following procedure will suffice. (We will
use v; and p; as local variables in both procedures.)

Compute the substep s; on the constraints in
an iterative procedure of minimizing Gauss-Newton
models of a? within the trust region of that subprob-
2

lem, using || a? || as an internal merit function:

Given zp = z. € R", A, >0, 7 € (0, 1),
and a > 1, set yo = 20, do = TA,, vg = 0.
For j =0,1,..., while || v; || < el
and at least until v; # 0 do {
Construct
0} (v +p) = | aly;) + Val ()" |
Find an approximate solution p; to

minimize q?(yj +p)
subject to Pl <46;
ly+rll <A

that satisfies FCD for || ak ||2 from y;.
Compare the actual and predicted decrease
. 2
mfor [ 2
oo L) |7 — [ty +2)) |
= 5 .
I @k (y;) II” = a (yj + pj)

Evaluate p; and update y; according to (5)
and d; according to (7).
Set vj41 = v + (yi+1 — ¥5):

}

Set 51 = v;.

Thus, the subproblem for computing s; is an uncon-
strained trust-region subproblem. By results of the
unconstrained AMF [13], the substep s; satisfies the
FCD condition for that subproblem.

Once s; 1s computed, zy 1s set to zg + s1, and sg
can be computed via the following procedure:

Given z;1 € R", A, >0, 7€ (0,1), and o > 1,

set yo = 21, 0p = T/AZ —||s1]|?, vo = 0.
For j =0,1,... while || v; || < a/AZ —||s1]|?
and at least until v; # 0 do {
Construct
al (v; +p) = ol (v;) + Val (y;) P+ 30" Bjp,
where B; approximates the second order
information for af at y;.
Find an approximate solution p; to

minimize q! (y; +p)
subject to ch(zo)Tp =0
lpll <4;
lyi+pll <A

that satisfies FCD for af from y;.
Compare the actual and predicted decrease
in al:

_ al(y) —al(y; +p))

at (y;) — af (v; + pj)

Evaluate p; and update y; according to (5)
and §; according to (7).
Set vj41 = v; + (Y41 — ¥j)-

}

Set 55 = v;.

Set s. = 51 + $9.
To prove the satisfaction of FCD for the resulting
step s., a more stringent rule for updating y; is re-
quired than for updating z. in (5). Namely, p > 0,
independent of the iterates, is chosen and the iterate
is updated as follows:

If y; = a., then y;41 = v otherwise.
If y; # a., then y;41 = Y otherwise.

(7)
Note that for computing ss, the null-space con-
straints that preserve the predicted decrease in the
constraints already obtained during the computa-
tion of sy, are eliminated via a change of variables,
thus converting the second subproblem into a lower-
dimensional unconstrained trust-region subproblem.
By results for the unconstrained AMF, s, satisfies
FCD for its subproblem.

Note, again, that in the “inner” algorithms, the
models that are minimized are now the quadratic ap-
proximations of @” and af, not of h and f, respec-
tively.

There are a number of ways to solve the subprob-
lems in the “inner” iterative procedures. The reader
is referred to [24, 28] for details.

Statement of the bilevel AMF algorithm

The algorithm in its entirety can now be stated
concisely:
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Given z. € R", A, > 0, and p. > 1,

Do until convergence:
Select the models a’g and ag.
Compute the trial step s. = s1 + s3.
Update the penalty parameter p..
Evaluate s. and update x. and A..
End Do

Multilevel AMF

In the context of MDO, the bilevel algorithm is
easily extended to the general, multilevel case. In
particular, the constraint system is partitioned into
M blocks, hy(2),..., ha(x), and the total trial step
is computed as a sum of M + 1 substeps.

We describe a multilevel algorithm with general
first-order models. We will denote the iterates x.
and will omit the subscripts denoting the iteration
number, for convenience of notation. Instead, the
subscripts will denote entities concerning a partic-
ular constraint block, e.g., we let a’ ... a% denote
the models of the constraint blocks hy(x),. .., ha(z),
respectively. Then the algorithm can be stated as fol-
lows:

Given z. € R, 0 > 0,k=1,... M+1,ps >0k =
1 M

gy 5

Outer Loop: Do until convergence:

20 = L¢

Compute the trial step

Inner Loop: Do k=1, M
Select af such that a(25_1) = hi(2x—1)
and Val(zp_1) = Vhg(25-1)
Compute s; that approximately solves:

minimize aZ(zk_l +53)

subject toVa?(zj_l)Ts =0,j=1,...,k—1

B
Set zp = zp_1 + sg
End Inner Loop
Step on the objective function:
Select a/ such that af (2p7) = f(2a)
and Va/ (zy) = Vf(zm)
Compute spry1 that approximately solves:
minimizea’ (23 + )
subject to Va?(zj_l)Ts =0,j=1,.... M
|5 [I < darga
The trial step is: s =s1 + ...+ syr41
Update the penalty parameters
Evaluate the step and update
the trust-region radii
End Outer Loop

In summary, at each iteration, for each of the sub-
problems, a lower-fidelity approximation is selected
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that satisfies the consistency conditions for that par-
ticular model at the most recently computed point.
Then unconstrained procedures described in the sec-
tion on bilevel AMF are applied to models of each
constraint block, followed by the unconstrained pro-
cedure on the model of the objective function. The
procedures are unconstrained because the null-space
constraints on all of the subproblems are eliminated
via a change of variables. The individual substeps
sp, k= 1,..., M 4+ 1, satisfy FCD for the subprob-
lems they solve.

The individual merit functions are modified in an
obvious manner. The complete merit function of the
multilevel algorithm has to be used with the appropri-
ate “staged” penalty parameter updating procedure.
The reader is referred to [25], for example, for details
on the total merit function and procedures for up-
dating the penalty parameters and the trust-region
radii.

Preliminary numerical results

The algorithm has undergone initial testing on
several simple problems. Table 1 illustrates prelim-
inary results. Problems denoted by “HSxx” are the
problems from the Hock and Schittkowski test suite
for nonlinear optimization [32, 33]. All problems
are small, algebraic, nonlinear programming prob-
lems with well-known solutions.

The entries in the tables are the numbers of func-
tion evaluations taken by each method to attain a
known solution of a particular problem.

The problems were 1nitially solved using the well-
known commercial optimization package NPSOL [34]
that improves the global properties of the SQP al-
gorithm via the use of line searches. The problems
were then solved using a research implementation
of MAESTRO without approximation management.
For NPSOL and MAESTRQO, the number of function
evaluations is reported. “F” denotes failure to con-
verge in a thousand iterations.

Finally, the problems were solved with the
MAESTRO-based AMF approach. Because the
present demonstrations deal with physical models
of varying fidelity, this very simple test used func-
tion evaluations computed to machine precision as
the “high-fidelity” models, and function evaluations
with abbreviated precision and added noise as “lower-
fidelity” models. A variety of precisions were at-
tempted. On average, the “lower-fidelity” functions
have from two to four digits of accuracy after the
decimal point. The number of “high-fidelity” evalu-
ations is reported with the total number of evalua-
tions, including the number “lower-fidelity” evalua-
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tions, given in parentheses.

Given the initial problem set, the results sug-
gest that the MAESTRO-based AMF tends not im-
pact the performance of the underlying algorithm sig-
nificantly and it does reduce the number of “high-
fidelity” function evaluations.

In order to draw definitive conclusions, a consid-
erable amount of experimentation with physics-based
models will be required.

At present, we are continuing testing the method
on a subset of the MDO Test Suite [35] and we are in
the process of demonstrating AMF on a more realistic
problem of aerodynamic wing design.

Concluding remarks

In summary, we introduced an approximation
management framework for solving constrained non-
linear problems based on an extension of the MAE-
STRO algorithms for nonlinear programming and
MDO.

Global convergence of the AMF to a critical point
of the original high-fidelity problem is an immediate
consequence of the convergence results for underlying
MAESTRO algorithms and the results for the uncon-
strained AMF.
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